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@
Transformer Layer - Powerful Building Bloek="-

@ Highly flexible building block — powerful models
@ E.g., Large Language Models (LLMs)
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Transformer Applications - NLP

@ Three broad configurations - based on the form of i/p and o/p
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@ Sequential input to a single variable output (Transformer acts as an
‘Encoder’)
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Transformer Applications - NLP " e

@ Sequential input to a single variable output (Transformer acts as an
‘Encoder’)

o E.g., Sentiment classification
g
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@ A single vector as input and a sequence as output (Transformer acts
as a ‘Decoder’)
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Transformer Applications - NLP " e

@ A single vector as input and a sequence as output (Transformer acts
as a ‘Decoder’)

o E.g., Caption generation from an image
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Transformer Applications - NLP " s

@ Sequence-to-Sequence processing tasks
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Transformer Applications - NLP J

@ Sequence-to-Sequence processing tasks
o E.g., Machine Translation
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Decoder Transformers

@ Can be used as ‘Generative Models’
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@ Can be used as ‘Generative Models’
@ E.g., GPT (Generative Pre-trained Transformer)

@ Goal: use the transformer architecture to construct an
‘Autoregressive’ model
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Decoder Transformers “ S

@ Can be used as ‘Generative Models’
@ E.g., GPT (Generative Pre-trained Transformer)

@ Goal: use the transformer architecture to construct an
‘Autoregressive’ model

@ p(xn/xtha cee 73:71—1)
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Decoder Transformers - GPT

@ Stack of transformer layers
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@ Stack of transformer layers

@ i/p- x1,x2,...,xN each of D dimensions
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Decoder Transformers - GPT

@ Stack of transformer layers
@ i/p- x1,x2,...,xN each of D dimensions

Q@ o/p'-’ilyi'%"'ai'N
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Decoder Transformers - GPT “ L

@ Stack of transformer layers

@ i/p- x1,x2,...,xN each of D dimensions

@ o/p- Z1,%a,...,TN

@ Each o/p token needs to represent a probability distribution over the
dictionary (say, K words)
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@ Linear transformation of o/p tokens with W) (dimensions - K x D)
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@ Linear transformation of o/p tokens with W) (dimensions - K x D)
@ Y = Softmax(XW(P))
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Decoder Transformers |||||
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Decoder Transformers

@ Can be trained over a large corpus of unlabelled text
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@ Can be trained over a large corpus of unlabelled text

@ Self-supervised approach
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Decoder Transformers “ e e

@ Can be trained over a large corpus of unlabelled text
@ Self-supervised approach

@ Predicting x,,+1 from an input of 1, x2,...,2p—1
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Decoder Transformers

@ Employs ‘Masked’ or ‘Causal’ attention
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Decoder Transformers

@ Employs ‘Masked’ or ‘Causal’ attention
@ Sets the attention weights of all the ‘later’ tokens
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Encoder Transformers

@ Take sequences as input and produce fixed-length vectors
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@ Take sequences as input and produce fixed-length vectors
o E.g., class label (sentiment) as output
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Encoder Transformers || T

@ Take sequences as input and produce fixed-length vectors
o E.g., class label (sentiment) as output

@ E.g., BERT (Bidirectional Encoder Representations from
Transformers)
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Encoder Transformers || T

@ Take sequences as input and produce fixed-length vectors
o E.g., class label (sentiment) as output

@ E.g., BERT (Bidirectional Encoder Representations from
Transformers)

@ Goal is to pre-train a language model using a large corpus of text
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Encoder Transformers || T

@ Take sequences as input and produce fixed-length vectors
o E.g., class label (sentiment) as output

@ E.g., BERT (Bidirectional Encoder Representations from
Transformers)

@ Goal is to pre-train a language model using a large corpus of text
o Then, to fine-tune it for a broad range of downstream tasks
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Encoder Transformers |||||
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@ First token of every input is a special token < class >
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@ First token of every input is a special token < class >

@ O/p of this is ignored during pre-training
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Encoder Transformers || T

@ First token of every input is a special token < class >
@ O/p of this is ignored during pre-training
@ Pre-training goal is to predict the missing tokens
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Encoder Transformers || T

@ A random 15% of the tokens are replaced with < mask > and the
training predicts them
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Encoder Transformers || T

@ A random 15% of the tokens are replaced with < mask > and the
training predicts them

@ The cat <mask> sleeping on the <mask> next to the sofa.
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Encoder Transformers || T

@ A random 15% of the tokens are replaced with < mask > and the
training predicts them

@ The cat <mask> sleeping on the <mask> next to the sofa.
@ Model should predict is and floor at 3 and 7 nodes respectively
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@ ‘Bidirectional’ +— model can access words both before and after the
masked word

Dr. Konda Reddy Mopuri dl - 16/ Transformer Applications 18



mﬂﬁﬁﬂwﬁ

Encoder Transformers “ e o

@ ‘Bidirectional’ +— model can access words both before and after the
masked word

@ Only a fraction of tokens act as labels
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Encoder Transformers “ e o

@ ‘Bidirectional’ +— model can access words both before and after the
masked word

@ Only a fraction of tokens act as labels

@ Doesn’t generate sequences
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Encoder Transformers || T

@ After the pre-training, the Encoder model can be finetuned
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Encoder Transformers || T

@ After the pre-training, the Encoder model can be finetuned

@ E.g., Tex classification: < class > token is used for prediction
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Encoder Transformers

@ After the pre-training, the Encoder model can be finetuned
@ E.g., Tex classification: < class > token is used for prediction

@ A new layer (LSM in the figure) predicts the probability distribution
over the dictionary
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@ Combines an encoder with a decoder
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@ Combines an encoder with a decoder

@ E.g., machine translation from English to French
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@ Combines an encoder with a decoder
@ E.g., machine translation from English to French

@ Decoder model generates the token sequence corresponding to the
French o/p
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@ Combines an encoder with a decoder
@ E.g., machine translation from English to French

@ Decoder model generates the token sequence corresponding to the
French o/p

@ Conditioned on the entire input sequence corresponding to the
English sentence — ‘cross attention’
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Sequnce-to-Sequence Transformers
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Sequnce-to-Sequence Transformers
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LLM - Large Language Models
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@ Recent development in ML and NLP
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LLM

@ Recent development in ML and NLP
@ ‘Large’ — Billions of parameters
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LLM

@ Recent development in ML and NLP
@ ‘Large’ — Billions of parameters
@ Large datasets and Powerful GPUs
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Recent development in ML and NLP
‘Large’ — Billions of parameters

Large datasets and Powerful GPUs

® © 6 6

Unlike earlier language models, these are self-supervised first on large
corpuses then finetuned with (small) labeled data
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LLM

@ ‘Foundation Model’ < A model with broad capabilities that can be
subsequently fine-tuned for specific tasks
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@ An Efficient approach to fine-tuning is called low-rank adaptation
(LoRA)
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@ An Efficient approach to fine-tuning is called low-rank adaptation
(LoRA)

@ A trained overparameterized model has a low intrinsic dimensionality
with respect to fine-tuning
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Bishop's Book
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@ With their growing size, the need for fine-tuning is reducing
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@ With their growing size, the need for fine-tuning is reducing

@ Generative language models are now able to solve a broad range of
tasks through text-based interaction (prompt)
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@ With their growing size, the need for fine-tuning is reducing

@ Generative language models are now able to solve a broad range of
tasks through text-based interaction (prompt)

@ Fine-tuning large language models through human evaluation of
generated output (e.g., reinforcement learning through human
feedback or RLHF)
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